課程簡介
介紹
什麼是人工智慧?
- 計算心理學
- 計算哲學
Machine Learning
- 計算學習理論
- Computer 計算體驗演算法
Deep Learning
- 人工神經網路
- 深度學習與機器學習
準備開發環境
- 安裝與設定Mathematica
Machine Learning
- 匯入和分離數據
- 對數據進行歸一化和插值
- 對元素進行分組和排序
預測變數和分類變數
- 使用線性模型
- 表示數據集
- 生成值序列
受監督 Machine Learning
- 實施受監督的任務
- 使用訓練數據
- 衡量績效
- 識別集群
總結和結論
最低要求
- 對 Mathematica 的理解
觀眾
- 數據科學家
客戶評論 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Course - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.