Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
課程簡介
介紹
- Kubeflow on AWS 本地部署與其他公共雲供應商的對比
Kubeflow 功能和體系結構概述
啟動 AWS 帳戶
準備和啟動啟用了 GPU 的 AWS 實例
設置使用者角色和許可權
準備構建環境
選擇 TensorFlow 模型和數據集
將代碼和框架打包到 Docker 映射中
使用 EKS 設置 Kubernetes 集群
暫存訓練和驗證數據
配置 Kubeflow 管道
在 EKS 中使用 Kubeflow 啟動訓練作業
在運行時可視化訓練作業
作業完成後進行清理
故障排除
總結和結論
最低要求
- 對機器學習概念的理解。
- 瞭解雲計算概念。
- 對容器 (Docker) 和編排 (Kubernetes) 有大致的瞭解。
- 一些 Python 程式設計經驗是有説明的。
- 具有使用命令行的經驗。
觀眾
- 數據科學工程師。
- DevOps 對機器學習模型部署感興趣的工程師。
- 對機器學習模型部署感興趣的基礎結構工程師。
- 希望將機器學習功能與其應用程式集成和部署的軟體工程師。
28 時間:
客戶評論 (3)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Course - MLflow
All good, nothing to improve
Ievgen Vinchyk - GE Medical Systems Polska Sp. Z O.O.
Course - AWS Lambda for Developers
IOT applications